
Frank Winkler (frank.winkler@tu-dresden.de)

Performance Analysis at Scale
using Score-P and Vampir

Scaling your Science on Mira Workshop 2016

Disclaimer

•  Bad MPI (50-90%)
•  No node-level parallelism (94%)
•  No vectorization (75%)
•  Bad memory access pattern (99%)
•  In sum: 0.008% of the peak performance

(785 gigaflops of Mira)

It is extremely easy to
waste performance!

Scaling your Science on Mira Workshop 2016 – Frank Winkler – Slide 2

Disclaimer (2)

Performance tools will not automatically
make your code run faster. They help you
understand, what your code does and
where to put in work.

Scaling your Science on Mira Workshop 2016 – Frank Winkler – Slide 3

Performance engineering workflow

• Calculation of metrics
• Identification of
performance problems

• Presentation of results

• Modifications intended
to eliminate/reduce
performance problem

• Collection of
performance data

• Aggregation of
performance data

• Prepare application
with symbols

• Insert extra code
(probes/hooks)

Preparation Measurement

Analysis Optimization

Scaling your Science on Mira Workshop 2016 – Frank Winkler – Slide 4

Agenda

• Sampling vs. Instrumentation
• Profiling vs. Tracing

Performance Analysis Approaches

• Architecture
• Workflow
• Cube

Score-P: Scalable Performance Measurement Infrastructure for Parallel Codes

• Mission
• Visualization Modes
• Performance Charts

Vampir: Event Trace Visualization

• Performance Analysis of NPB-MZ-MPI / BT on Mira

Demo

Conclusions

Scaling your Science on Mira Workshop 2016 – Frank Winkler – Slide 5

Sampling

•  Running program is periodically interrupted to take measurement

•  Statistical inference of program behavior
–  Not very detailed information on highly volatile metrics

–  Requires long-running applications

•  Works with unmodified executables

Time

main foo bar Measurement

t9 t7 t6 t5 t4 t1 t2 t3 t8

Scaling your Science on Mira Workshop 2016 – Frank Winkler – Slide 6

main foo bar Measurement

Time

t13 t9 t7 t6 t5 t4 t1 t2 t3 t8 t10 t11 t12 t14

Instrumentation

•  Measurement code is inserted such that every event of interest is
captured directly

•  Advantage:
–  Much more detailed information

•  Disadvantage:
–  Processing of source-code / executable necessary

–  Large relative overheads for small functions

Scaling your Science on Mira Workshop 2016 – Frank Winkler – Slide 7

Profiling vs. Tracing

•  Statistics

0 1 2 3 4 5

Number of Invocations
Execution Time

main

foo

bar

Time

main foo bar foo

main foo bar foo

•  Timelines

Scaling your Science on Mira Workshop 2016 – Frank Winkler – Slide 8

Terms Used and How They Connect

Analysis Layer Analysis Technique

Data
Acquisition

Data
Recording

Data
Presentation

Profiling Tracing

Sampling Event-based
Instrumentation

Summarization

Statistics

Logging

Timelines

Scaling your Science on Mira Workshop 2016 – Frank Winkler – Slide 9

So what is the right choice?

Scaling your Science on Mira Workshop 2016 – Frank Winkler – Slide 10

Agenda

• Sampling vs. Instrumentation
• Profiling vs. Tracing

Performance Analysis Approaches

• Architecture
• Workflow
• Cube

Score-P: Scalable Performance Measurement Infrastructure for Parallel Codes

• Mission
• Visualization Modes
• Performance Charts

Vampir: Event Trace Visualization

• Performance Analysis of NPB-MZ-MPI / BT on Mira

Demo

Conclusions

Scaling your Science on Mira Workshop 2016 – Frank Winkler – Slide 11

Score-P: Motivation

•  Several performance tools co-exist

•  Separate measurement systems and output formats

•  Complementary features and overlapping functionality

•  Redundant effort for development and maintenance

•  Limited or expensive interoperability

•  Complications for user experience, support, training

Vampir

VampirTrace
OTF

Scalasca

EPILOG /
CUBE

TAU

TAU native
formats

Periscope

Online
measurement

Scaling your Science on Mira Workshop 2016 – Frank Winkler – Slide 12

Score-P: Functionality

•  Typical functionality for HPC performance tools
–  Instrumentation (various methods)

–  Sampling (experimental)

•  Flexible measurement without re-compilation
–  Basic and advanced profile generation

–  Event trace recording

•  Programming paradigms:
–  Multi-process

•  MPI, SHMEM

–  Thread-parallel
•  OpenMP, Pthreads

–  Accelerator-based
•  CUDA, OpenCL

Hybrid parallelism

Scaling your Science on Mira Workshop 2016 – Frank Winkler – Slide 13

Score-P: Architecture

	

Application (Process×Thread×Accelerator)	

Score-P measurement infrastructure

Hardware counter
(PAPI, rusage, PERF, plugins)

Memory Recording
(libc/C++ API)

Vampir Cube Periscope TAU

Event traces (OTF2) Call-path profiles
(CUBE4, TAU)

Online interface

	
	

Instrumentation wrapper
	 		

	
	
	

Process-level
(MPI, SHMEM)

Thread-level
(OpenMP, Pthreads)

Accelerator-based
(CUDA, OpenCL)

Sampling Interrupts
(PAPI, PERF, timer)

	 		
	
	
	

IO Recording
(Posix, NETCDF, HD5F)

Scalasca

Scaling your Science on Mira Workshop 2016 – Frank Winkler – Slide 14

Source code instrumentation
(Compiler, PDT, User)

	 		

	
	
	

Score-P: General Workflow
1.  Perform a reference run and note the runtime

2.  Instrument your application with Score-P

3.  Create a profile with full instrumentation

4.  Compare runtime with reference runtime to determine overhead
 If overhead is too high:

 à Create filter file using hints from scorep-score

 à Generate an optimized profile with filter applied

5.  Investigate profile with Cube

6.  Define (or adjust) filter file for a tracing run using scorep-score

7.  Generate a trace with filter applied

8.  Perform in-depth analysis on the trace data with Vampir

Scaling your Science on Mira Workshop 2016 – Frank Winkler – Slide 15

Score-P: Workflow / Instrumentation

CC = icc
CXX = icpc
F90 = ifc
MPICC = mpicc

CC = scorep <options> icc
CXX = scorep <options> icpc
F90 = scorep <options> ifc
MPICC = scorep <options> mpicc

•  To see all available options for instrumentation:
$ scorep --help
This is the Score-P instrumentation tool. The usage is:
scorep <options> <original command>

Common options are:
...
 --instrument-filter=<file>
 Specifies the filter file for filtering functions during
 compile-time. It applies the same syntax, as the one
 used by Score-P during run-time.

 --user Enables user instrumentation.

Scaling your Science on Mira Workshop 2016 – Frank Winkler – Slide 16

Score-P: Workflow / Measurement

•  Measurements are configured via environment variables

$ export SCOREP_ENABLE_PROFILING=true
$ export SCOREP_ENABLE_TRACING=false
$ export SCOREP_EXPERIMENT_DIRECTORY=profile

$ mpiprun <instrumented binary>

•  Example for generating a profile:

$ scorep-info config-vars --full

SCOREP_ENABLE_PROFILING
 [...]
SCOREP_ENABLE_TRACING
 [...]
SCOREP_TOTAL_MEMORY
 Description: Total memory in bytes for the measurement system
 [...]
SCOREP_EXPERIMENT_DIRECTORY
 Description: Name of the experiment directory
 [...]

Scaling your Science on Mira Workshop 2016 – Frank Winkler – Slide 17

Score-P: Workflow / Filtering

•  Use scorep-score to define a filter
–  Exclude short frequently called functions from measurement

•  For profiling: reduce measurement overhead (if necessary)
•  For tracing: reduce measurement overhead and total trace size

$ scorep-score –r profile/profile.cubex
Estimated aggregate size of event trace: 40GB
Estimated requirements for largest trace buffer (max_buf): 10GB
Estimated memory requirements (SCOREP_TOTAL_MEMORY): 10GB
 [...]
Flt type max_buf[B] visits time[s] time[%] time/visit[us] region
 [...]
 USR 3,421,305,420 522,844,416 144.46 13.4 0.28 matmul_sub
 USR 3,421,305,420 522,844,416 102.40 9.5 0.20 matvec_sub
 USR 3,421,305,420 522,844,416 200.94 18.6 0.38 binvcrhs
 USR 150,937,332 22,692,096 5.58 0.5 0.25 binvrhs
 USR 150,937,332 22,692,096 13.21 1.2 0.58 lhsinit

•  Filter file:
$ vim scorep.filt
SCOREP_REGION_NAMES_BEGIN EXCLUDE
 matmul_sub
 matvec_sub
 binvcrhs

Scaling your Science on Mira Workshop 2016 – Frank Winkler – Slide 18

Score-P: Cube

•  Profile analysis tool for displaying performance data of parallel
programs

•  Originally developed as part of Scalasca toolset

•  Available as a separate component of Score-P

•  Representation of values (severity matrix)
on three hierarchical axes
–  Performance property (metric)

–  Call-tree path (program location)

–  System location (process/thread)

•  Three coupled tree browsers

Call
path

P
ro

pe
rty

Location

Scaling your Science on Mira Workshop 2016 – Frank Winkler – Slide 19

Score-P: Cube Analysis Presentation

What kind of
performance

metric?

Where is it in the
source code?

In what context?

How is it
distributed across

the processes/threads?

Scaling your Science on Mira Workshop 2016 – Frank Winkler – Slide 20

Agenda

• Sampling vs. Instrumentation
• Profiling vs. Tracing

Performance Analysis Approaches

• Architecture
• Workflow
• Cube

Score-P: Scalable Performance Measurement Infrastructure for Parallel Codes

• Mission
• Visualization Modes
• Performance Charts

Vampir: Event Trace Visualization

• Performance Analysis of NPB-MZ-MPI / BT on Mira

Demo

Conclusions

Scaling your Science on Mira Workshop 2016 – Frank Winkler – Slide 21

Vampir: Mission

•  What happens in my application execution during a given
time in a given process or thread?

•  How do the communication patterns of my application
execute on a real system?

•  Are there any imbalances in computation, I/O or memory
usage and how do they affect the parallel execution of my
application?

Typical questions that Vampir helps to answer:

•  Visualization of dynamics
of complex parallel processes

•  Requires two components
–  Monitor/Collector (Score-P)

–  Charts/Browser (Vampir)

Scaling your Science on Mira Workshop 2016 – Frank Winkler – Slide 22

Vampir: Event Trace Visualization

•  Show dynamic run-time behavior graphically at a fine level of
detail

•  Provide summaries (profiles) on performance metrics

Timeline charts
•  Show application activities and

communication along a time axis

Summary charts
•  Provide quantitative results for the

currently selected time interval

Scaling your Science on Mira Workshop 2016 – Frank Winkler – Slide 23

Vampir: Visualization Modes (1)

•  Directly on front end or local machine

$ vampir

 Score-P Trace
File

(OTF2)

Vampir 9 CPU CPU

CPU CPU CPU CPU

CPU CPU

Multi-Core
Program

Thread parallel Small/Medium sized trace

Scaling your Science on Mira Workshop 2016 – Frank Winkler – Slide 24

Vampir: Visualization Modes (2)

•  On local machine with remote VampirServer

$ vampirserver start –n 16 $ vampir

Score-P

Vampir 9

Trace
File

(OTF2)

VampirServer

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

Many-Core
Program

LAN/WAN

Large Trace File
(stays on remote machine)

Parallel application

Scaling your Science on Mira Workshop 2016 – Frank Winkler – Slide 25

Vampir: Main Performance Charts

Timeline Charts
 Master Timeline

 Summary Timeline

 Performance Radar

 Process Timeline

 Counter Data Timeline

Summary Charts
 Function Summary

 Message Summary

all threads’ activities over time per thread

all threads activities over time per activity

all threads’ perf-metric over time

single thread’s activities over time

single threads perf-metric over time

Process Summary

Communication Matrix View

Scaling your Science on Mira Workshop 2016 – Frank Winkler – Slide 26

Vampir: Performance Charts

•  Trace visualization of FDS (Fire Dynamics Simulator)

Master Timeline

Summary Timeline

Process Timeline

Counter Data Timeline

Function Summary

Communication
Matrix View

Process Summary

Scaling your Science on Mira Workshop 2016 – Frank Winkler – Slide 27

Vampir: Performance Charts

Detailed information about
functions, communication

and synchronization events
for collection of processes.

Master Timeline

Scaling your Science on Mira Workshop 2016 – Frank Winkler – Slide 28

Vampir: Performance Charts

Summary Timeline

Fractions of the number of
processes that are actively
involved in given activities
at a certain point in time.

Scaling your Science on Mira Workshop 2016 – Frank Winkler – Slide 29

Vampir: Performance Charts

Process Timeline

Detailed information about
different levels of function
calls in a stacked bar chart
for an individual process.

Scaling your Science on Mira Workshop 2016 – Frank Winkler – Slide 30

Vampir: Performance Charts

Counter Timeline

Detailed counter
information over time for

an individual process.

Scaling your Science on Mira Workshop 2016 – Frank Winkler – Slide 31

Vampir: Performance Charts

Performance Radar

Detailed counter
information over time for
a collection of processes.

Scaling your Science on Mira Workshop 2016 – Frank Winkler – Slide 32

Vampir: Where Do the Metrics Come From?

•  Custom Metrics Built-In Editor

Scaling your Science on Mira Workshop 2016 – Frank Winkler – Slide 33

Vampir: Performance Charts

Function Summary

Overview of the
accumulated information

across all functions and for
a collection of processes.

Scaling your Science on Mira Workshop 2016 – Frank Winkler – Slide 34

Vampir: Performance Charts

Process Summary

Overview of the
accumulated

information across all
functions and for every
process independently.

Clustering:
Grouping of similar
processes by using

summarized
function information.

Scaling your Science on Mira Workshop 2016 – Frank Winkler – Slide 35

Vampir: Performance Charts

Communication Matrix View

Scaling your Science on Mira Workshop 2016 – Frank Winkler – Slide 36

Vampir at Scale: FDS with 8192 cores

Overview of the
entire application run
across all processes
based on available
pixels on screen.

•  Fit to chart height feature in Master Timeline

Scaling your Science on Mira Workshop 2016 – Frank Winkler – Slide 37

Agenda

• Sampling vs. Instrumentation
• Profiling vs. Tracing

Performance Analysis Approaches

• Architecture
• Workflow
• Cube

Score-P: Scalable Performance Measurement Infrastructure for Parallel Codes

• Mission
• Visualization Modes
• Performance Charts

Vampir: Event Trace Visualization

• Performance Analysis of NPB-MZ-MPI / BT on Mira

Demo

Conclusions

Scaling your Science on Mira Workshop 2016 – Frank Winkler – Slide 38

Vampir Demo: NPB-MZ-MPI / BT

•  The NAS Parallel Benchmark suite (MPI+OpenMP version)
–  Available from: http://www.nas.nasa.gov/Software/NPB

–  3 benchmarks in Fortran77 (bt-mz, lu-mz, sp-mz)

–  Configurable for various sizes & classes (S, W, A, B, C, D, E)

•  Benchmark configuration for demo:
–  Benchmark name: bt-mz

–  Number of MPI processes: NPROCS=4

–  Benchmark class: CLASS=W

–  What does it do?
•  Solves a discretized version of unsteady, compressible Navier-Stokes

equations in three spatial dimensions
•  Performs 200 time-steps on a regular 3-dimensional grid

Scaling your Science on Mira Workshop 2016 – Frank Winkler – Slide 39

NPB-MZ-MPI / BT Build

•  Connect to Mira and add Score-P to the SoftEnv system

% cp /projects/Tools/scorep/tutorial/NPB3.3-MZ-MPI.tar.gz .
% tar xzvf NPB3.3-MZ-MPI.tar.gz
% cd NPB3.3-MZ-MPI

% make bt-mz CLASS=W NPROCS=4
cd BT-MZ; make CLASS=W NPROCS=4 VERSION=
make: Entering directory 'BT-MZ'
cd ../sys; cc -o setparams setparams.c
../sys/setparams bt-mz 4 W
mpixlf77_r -c -O3 -qsmp=omp -qextname=flush bt.f
 [...]
Built executable ../bin/bt-mz_W.4
make: Leaving directory 'BT-MZ'

% vi .soft
 +scorep
% resoft

•  Copy sources to working directory

•  Compile the benchmark

Scaling your Science on Mira Workshop 2016 – Frank Winkler – Slide 40

NPB-MZ-MPI / BT Reference Execution

•  Copy jobscript and launch as a hybrid MPI+OpenMP application
% cd bin
% cp ../jobscript/mira/run.sh .
% less run.sh
 export OMP_NUM_THREADS=4
 runjob -n 4 -p 4 --block $COBALT_PARTNAME --env-all : bt-mz_W.4
% qsub -A <projid> -t 10 -n 1 --mode script run.sh
% cat <jobid>.outpout
 NAS Parallel Benchmarks (NPB3.3-MZ-MPI) - BT-MZ MPI+OpenMP Benchmark
 Number of zones: 4 x 4
 Iterations: 200 dt: 0.000800
 Number of active processes: 4
 Total number of threads: 16 (4.0 threads/process)

 Time step 1
 Time step 20
 [...]
 Time step 200
 Verification Successful

 BT-MZ Benchmark Completed.
 Time in seconds = 2.27

Hint: save the benchmark
output (or note the run time)
to be able to refer to it later

Scaling your Science on Mira Workshop 2016 – Frank Winkler – Slide 41

NPB-MZ-MPI / BT Instrumentation

•  Edit config/make.def to adjust build configuration

•  Modify specification of compiler/linker: MPIF77

SITE- AND/OR PLATFORM-SPECIFIC DEFINITIONS
#---
Items in this file may need to be changed for each platform.
#---
...
#---
The Fortran compiler used for MPI programs
#---
#MPIF77 = mpixlf77_r

Alternative variants to perform instrumentation
...
MPIF77 = scorep mpixlf77_r

This links MPI Fortran programs; usually the same as ${MPIF77}
FLINK = $(MPIF77)
...

Uncomment the
Score-P compiler

wrapper specification

Scaling your Science on Mira Workshop 2016 – Frank Winkler – Slide 42

NPB-MZ-MPI / BT Instrumented Build

•  Return to root directory and clean-up

•  Re-build executable using Score-P compiler wrapper

% make clean

% make bt-mz CLASS=W NPROCS=4
cd BT-MZ; make CLASS=W NPROCS=4 VERSION=
make: Entering directory 'BT-MZ'
cd ../sys; cc -o setparams setparams.c
../sys/setparams bt-mz 4 W
scorep mpixlf77_r -c -O3 -qsmp=omp -qextname=flush bt.f
 [...]
cd ../common; scorep mpixlf77_r -c -O3 -qsmp=omp -qextname=flush timers.f
scorep mpixlf77_r -O3 -qsmp=omp -qextname=flush –o ../bin.scorep/bt-mz_W.4
bt.o initialize.o exact_solution.o exact_rhs.o set_constants.o \
adi.o rhs.o zone_setup.o x_solve.o y_solve.o exch_qbc.o \
solve_subs.o z_solve.o add.o error.o verify.o mpi_setup.o \
../common/print_results.o ../common/timers.o
Built executable ../bin.scorep/bt-mz_W.4
make: Leaving directory 'BT-MZ'

Scaling your Science on Mira Workshop 2016 – Frank Winkler – Slide 43

NPB-MZ-MPI / BT Summary Measurement Collection

•  Change to the directory containing the new executable before
running it and adjust configuration
% cd bin.scorep
% cp ../jobscript/mira/* .
% less run_profile.sh
 export SCOREP_ENABLE_TRACING=false
 export SCOREP_ENABLE_PROFILING=true
 export SCOREP_TOTAL_MEMORY=100M
 export SCOREP_EXPERIMENT_DIRECTORY=scorep_bt-mz_W_4x4_sum
 export OMP_NUM_THREADS=4
 runjob -n 4 -p 4 --block $COBALT_PARTNAME --env-all : bt-mz_W.4
% qsub -A <projid> -t 10 -n 1 --mode script run_profile.sh
% cat <jobid>.outpout
 NAS Parallel Benchmarks (NPB3.3-MZ-MPI) - BT-MZ MPI+OpenMP Benchmark
 Number of zones: 4 x 4
 [...]
 Time step 200
 Verification Successful

 BT-MZ Benchmark Completed.
 Time in seconds = 12.74

Measurement
overhead too high!

Scaling your Science on Mira Workshop 2016 – Frank Winkler – Slide 44

NPB-MZ-MPI / BT Summary Analysis Result Scoring

•  Report scoring as textual output

•  Region/callpath classification
•  MPI (pure MPI library functions)
•  OMP (pure OpenMP functions/regions)
•  USR (user-level source local computation)
•  COM (“combined” USR + OpenMP/MPI)
•  ANY/ALL (aggregate of all region types)

% scorep-score scorep_bt-mz_W_4x4_sum/profile.cubex
Estimated aggregate size of event trace: 1025MB
Estimated requirements for largest trace buffer (max_buf): 265MB
Estimated memory requirements (SCOREP_TOTAL_MEMORY): 273MB

flt type max_buf[B] visits time[s] time[%] time/visit[us] region
 ALL 277,799,892 41,157,529 169.38 100.0 4.12 ALL
 USR 274,792,492 40,418,321 71.66 42.3 1.77 USR
 OMP 6,882,860 685,952 95.52 56.4 139.25 OMP
 COM 371,930 45,940 1.51 0.9 32.85 COM
 MPI 102,286 7,316 0.70 0.4 95.39 MPI

USR

USR

COM

COM USR

OMP MPI

1 GB of event trace
273 MB per rank!

Scaling your Science on Mira Workshop 2016 – Frank Winkler – Slide 45

NPB-MZ-MPI / BT Summary Analysis Report Breakdown

•  Score report breakdown by region

% scorep-score -r scorep_bt-mz_W_4x4_sum/profile.cubex
 [...]
Flt type max_buf[B] visits time[s] time[%] t/v*[us] region
 ALL 277,799,892 41,157,529 169.38 100.0 4.12 ALL
 USR 274,792,492 40,418,321 71.66 42.3 1.77 USR
 OMP 6,882,860 685,952 95.52 56.4 139.25 OMP
 COM 371,930 45,940 1.51 0.9 32.85 COM
 MPI 102,286 7,316 0.70 0.4 95.39 MPI

 USR 85,774,338 12,516,672 17.61 10.4 1.41 matmul_sub
 USR 85,774,338 12,516,672 19.71 11.6 1.57 matvec_sub
 USR 85,774,338 12,516,672 28.85 17.0 2.30 binvcrhs
 USR 7,974,876 1,170,624 1.86 1.1 1.59 binvrhs
 USR 7,974,876 1,170,624 2.94 1.7 2.52 lhsinit
 USR 3,473,912 526,848 0.67 0.4 1.28 exact_solution
 OMP 410,040 25,728 0.15 0.1 5.78 !$omp parallel
 OMP 410,040 25,728 0.15 0.1 5.83 !$omp parallel
 OMP 410,040 25,728 0.15 0.1 5.73 !$omp parallel
 [...]

More than
270 MB just for
these 6 regions

42% of the total time, however,
much of that is very likely

measurement overhead due to
short frequently called functions!

Scaling your Science on Mira Workshop 2016 – Frank Winkler – Slide 46

NPB-MZ-MPI / BT Summary Analysis Report Filtering

•  Report scoring with prospective filter listing 6 USR regions
% cat ../config/scorep.filt
SCOREP_REGION_NAMES_BEGIN EXCLUDE
binvcrhs*
matmul_sub*
matvec_sub*
exact_solution*
binvrhs*
lhs*init*
timer_*

% scorep-score -f ../config/scorep.filt scorep_bt-mz_W_4x4_sum/profile.cubex
Estimated aggregate size of event trace: 23MB
Estimated requirements for largest trace buffer (max_buf): 8MB
Estimated memory requirements (SCOREP_TOTAL_MEMORY): 16MB
(hint: When tracing set SCOREP_TOTAL_MEMORY=16MB to avoid intermediate
 flushes or reduce requirements using USR regions filters.)

23 MB of event trace,
16 MB per rank for

measurement!

Scaling your Science on Mira Workshop 2016 – Frank Winkler – Slide 47

NPB-MZ-MPI / BT Summary Measurement Collection

•  Generate an optimized profile with filter applied
% vi run_profile.sh
 export SCOREP_ENABLE_TRACING=false
 export SCOREP_ENABLE_PROFILING=true
 export SCOREP_TOTAL_MEMORY=100M
 export SCOREP_EXPERIMENT_DIRECTORY=scorep_bt-mz_W_4x4_sum_with_filter
 export SCOREP_FILTERING_FILE=../config/scorep.filt
 export OMP_NUM_THREADS=4
 runjob -n 4 -p 4 --block $COBALT_PARTNAME --env-all : bt-mz_W.4
% qsub -A <projid> -t 10 -n 1 --mode script run_profile.sh
% cat <jobid>.outpout
 NAS Parallel Benchmarks (NPB3.3-MZ-MPI) - BT-MZ MPI+OpenMP Benchmark
 Number of zones: 4 x 4
 [...]
 Time step 200
 Verification Successful

 BT-MZ Benchmark Completed.
 Time in seconds = 3.58

Scaling your Science on Mira Workshop 2016 – Frank Winkler – Slide 48

NPB-MZ-MPI / BT Profile Analysis

•  Flat profile analysis with cube_stat:
$ cube_stat –t 20 –p scorep_bt-mz_W_4x4_sum_with_filter/profile.cubex
cube::Region NumberOfCalls ExclusiveTime InclusiveTime
!$omp do @y_solve.f:52 12864.000000 10.843637 10.843637
!$omp do @z_solve.f:52 12864.000000 10.545983 10.545983
!$omp do @x_solve.f:54 12864.000000 9.567538 9.567538
...

•  Call-path profile analysis with Cube:
$ cube scorep_bt-mz_W_4x4_sum_with_filter/profile.cubex

Scaling your Science on Mira Workshop 2016 – Frank Winkler – Slide 49

NPB-MZ-MPI / BT Trace Measurement Collection

•  Perform measurement run with tracing enabled and filter
applied
% cd bin.scorep
% less run_trace.sh
 export SCOREP_ENABLE_TRACING=true
 export SCOREP_ENABLE_PROFILING=false
 export SCOREP_FILTERING_FILE=../config/scorep.filt
 export SCOREP_TOTAL_MEMORY=100M
 export SCOREP_EXPERIMENT_DIRECTORY=scorep_bt-mz_W_4x4_trace
 export SCOREP_METRIC_PAPI=PAPI_FP_OPS,PAPI_L1_DCM
 export OMP_NUM_THREADS=4
 runjob -n 4 -p 4 --block $COBALT_PARTNAME --env-all : bt-mz_W.4
% qsub -A <projid> -t 10 -n 1 --mode script run_trace.sh
% cat <jobid>.output
 NAS Parallel Benchmarks (NPB3.3-MZ-MPI) - BT-MZ MPI+OpenMP Benchmark
 Number of zones: 4 x 4
 [...]
 Time step 200
 Verification Successful

 BT-MZ Benchmark Completed.
 Time in seconds = 3.49

Scaling your Science on Mira Workshop 2016 – Frank Winkler – Slide 50

NPB-MZ-MPI / BT Interactive Trace Analysis with Vampir

•  Download and install VampirClient for target platform

•  Start VampirServer on Cooley and follow output instructions

$ vampirserver start –n 4 -- -A Tools –w 30
Launching VampirServer...
Submitting PBS batch job (this might take a while)...
** Project 'tools'; job rerouted to queue 'prod-short'
VampirServer 9.0.0 (r9950)
Licensed to Argonne NL
Running 3 analysis processes... (abort with vampirserver stop 23286)
VampirServer <23286> listens on: cc123:30097

Please run:
 ssh -L 30001:cc123:30097 <user>@cooley.alcf.anl.gov
on your desktop to create ssh tunnel to VampirServer.

Start vampir on your desktop and choose 'Open Other -> Remote File'
 Description: cooley, Server: localhost, Port: 30001
 Authentication: None
 Connection type: Socket
 Ignore "More Options"

Linux 64bit
$ scp <user>@mira.alcf.anl.gov:/soft/perftools/vampir/downloads/vampir*x86_64-setup.bin .
$ scp <user>@mira.alcf.anl.gov:/soft/perftools/vampir/license/vampir-remote.license .
$ bash ./vampir-*.bin

Scaling your Science on Mira Workshop 2016 – Frank Winkler – Slide 51

NPB-MZ-MPI / BT Trace Analysis with Vampir

Scaling your Science on Mira Workshop 2016 – Frank Winkler – Slide 52

Agenda

• Sampling vs. Instrumentation
• Profiling vs. Tracing

Performance Analysis Approaches

• Architecture
• Workflow
• Cube

Score-P: Scalable Performance Measurement Infrastructure for Parallel Codes

• Mission
• Visualization Modes
• Performance Charts

Vampir: Event Trace Visualization

• Performance Analysis of NPB-MZ-MPI / BT on Mira

Demo

Conclusions

Scaling your Science on Mira Workshop 2016 – Frank Winkler – Slide 53

Conclusions: Score-P Workflow

Instrumentation

Profile Run

Trace Run

Profile Analysis

Trace Analysis

scorep-score

Filtering

Reduce overhead
and trace size

Reduce overhead
if necessary

Run-time filter

Compile-time filter

Reduce run-time
filter overhead

Scaling your Science on Mira Workshop 2016 – Frank Winkler – Slide 54

Conclusions

•  Common instrumentation and measurement
infrastructure for various analysis tools

•  Hides away complicated details
•  Provides many options and switches for experts

Score-P

•  Interactive event trace visualization and analysis
•  Intuitive browsing and zooming
•  Scalable to large trace data sizes (20 TByte)
•  Scalable to high parallelism (200000 processes)
•  Vampir for Linux, Windows and Mac OS

Vampir & VampirServer

Scaling your Science on Mira Workshop 2016 – Frank Winkler – Slide 55

Score-P is available at:
http://www.vi-hps.org/projects/score-p
Get support via support@score-p.org

Vampir is available at http://www.vampir.eu

Get support via vampirsupport@zih.tu-dresden.de

Scaling your Science on Mira Workshop 2016 – Frank Winkler – Slide 56

Score-P: Workflow / Advanced Instrumentation

•  For CMake and autotools based build systems it is
recommended to use the scorep-wrapper script instances

#CMake

SCOREP_WRAPPER=OFF cmake .. \
 -DCMAKE_C_COMPILER=scorep-icc \
 -DCMAKE_CXX_COMPILER=scorep-icpc \
 -DCMAKE_Fortran_COMPILER=scorep-ifc

#Autotools

SCOREP_WRAPPER=OFF ../configure \
 CC=scorep-icc \
 CXX=scorep-icpc \
 FC=scorep-ifc \
 --disable-dependency-tracking

•  Pass instrumentation and compiler flags at make

make SCOREP_WRAPPER_INSTRUMENTER_FLAGS="--user" \
 SCOREP_WRAPPER_COMPILER_FLAGS="-g –O2"

scorep --user <your_compiler> –g –O2

Disable
instrumentation

Scaling your Science on Mira Workshop 2016 – Frank Winkler – Slide 57

Score-P Advanced Features: Metrics

•  Available PAPI metrics
–  Preset events: common set of events deemed relevant and useful for

application performance tuning

–  Native events: set of all events that are available on the CPU (platform
dependent)

•  Available resource usage metrics
$ man getrusage
 [... Output ...]

 struct rusage {

struct timeval ru_utime; /* user CPU time used */
struct timeval ru_stime; /* system CPU time used */
[... More output ...]

$ papi_avail

$ papi_native_avail

Scaling your Science on Mira Workshop 2016 – Frank Winkler – Slide 58

Score-P Advanced Features: Metrics (2)

•  Recording hardware counters via PAPI

•  Recording operating system resource usage

$ export SCOREP_METRIC_PAPI=PAPI_TOT_INS,PAPI_FP_INS

$ export SCOREP_METRIC_RUSAGE=ru_maxrss,ru_stime

Scaling your Science on Mira Workshop 2016 – Frank Winkler – Slide 59

Score-P Advanced Features: Sampling

•  Alternative to compiler instrumentation to generate profiles or
traces

•  Regulate the trade-off between overhead and correctness

•  Libunwind/1.1 to capture current stack

•  Sampling interrupt sources:
–  Interval timer

–  PAPI

–  Perf

•  Example for enabling sampling for measurement run:

$ export SCOREP_ENABLE_UNWINDING=true
$ export SCOREP_SAMPLING_EVENTS=PAPI_TOT_CYC@1000000

Scaling your Science on Mira Workshop 2016 – Frank Winkler – Slide 60

Score-P Advanced Features: Memory Recording

•  Memory (de)allocations are recorded via the libc/C++ API

•  Recording of memory location’s call-site in sampling mode
–  Debugging symbols required (-g)

•  Interplay of memory usage and application’s execution
–  CUBE: (De)allocation size, maximum heap memory, leaked bytes

–  Vampir: Memory usage in “Counter Timelines”

•  Enabling memory recording for measurement run:

$ export SCOREP_MEMORY_RECORDING=true

Scaling your Science on Mira Workshop 2016 – Frank Winkler – Slide 61

Vampir Bonus: Case Study of FDS

•  Indentification of program phases

Initialization Phase Computation Phase

Scaling your Science on Mira Workshop 2016 – Frank Winkler – Slide 62

Vampir Bonus: Case Study of FDS

•  Load imbalance in initialization phase

Master thread:0 is
reading input files.
All other processes

are waiting in
MPI_Barrier.

Scaling your Science on Mira Workshop 2016 – Frank Winkler – Slide 63

Vampir Bonus: Case Study of FDS

•  Load imbalance in initialization phase (2)

Initialization time
increases with the

process index.

Scaling your Science on Mira Workshop 2016 – Frank Winkler – Slide 64

Vampir Bonus: Case Study of FDS

•  Computation phase

12% communication and
88% computation during

computation phase.

Scaling your Science on Mira Workshop 2016 – Frank Winkler – Slide 65

Vampir Bonus: Case Study of FDS

•  Unnecessary synchronization in computation phase

MPI_Barrier
unneeded.

Scaling your Science on Mira Workshop 2016 – Frank Winkler – Slide 66

Vampir Bonus: Case Study of FDS

•  Inefficient cache usage in computation phase

Low Flops/s
rate due to
a higher L2

cache
miss rate.

Scaling your Science on Mira Workshop 2016 – Frank Winkler – Slide 67

